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Transfer Matrix Functional Relations for the
Generalized τ2(tq) Model
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The N -state chiral Potts model in lattice statistical mechanics can be obtained
as a “descendant” of the six-vertex model, via an intermediate “Q” or “τ2(tq )”
model. Here we generalize this to obtain a column-inhomogeneous τ2(tq )

model, and derive the functional relations satisfied by its row-to-row transfer
matrix. We do not need the usual chiral Potts relations between the N th pow-
ers of the rapidity parameters ap, bp, cp, dp of each column. This enables us
to readily consider the case of fixed-spin boundary conditions on the left and
right-most columns. We thereby re-derive the simple direct product structure of
the transfer matrix eigenvalues of this model, which is closely related to the
superintegrable chiral Potts model with fixed-spin boundary conditions.

KEY WORDS: Statistical mechanics; lattice models; chiral Potts model; six-
vertex model; Q matrix.

1. INTRODUCTION

In a remarkable paper,(1) Bazhanov and Stroganov showed in 1990 how
the recently-discovered solvable chiral Potts model could be obtained from
the six-vertex model by a two-stage process. First one looked for a “Q” or
τ2(tq) model whose column-to-column transfer matrix commuted with that
of the six-vertex model. This turned out to be a spin model on the square
lattice, each spin taking a given number N of values. Then one looked for
a third model whose row-to-row transfer matrix commuted with that of
the τ2(tq) model. This was the N -state chiral Potts model. Some of this
working was re-presented and extended by Baxter, Bazhanov and Perk.(2,3)
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2 Baxter

Here we focus attention on the square lattice L of L columns. With
row i we associate a horizontal “rapidity” qi . With column j we associate
two successive vertical rapidities p2j−1, p2j , as in Fig. 1 (except for the ini-
tial six-vertex model, which has only one rapidity line per column, as we
mention below).

The p and q rapidities are of different types: q is a six-vertex model
rapidity, specified by a single complex variable tq , while p is a chiral Potts
model rapidity, specified by four homogeneous variables ap, bp, cp, dp.
Because the aim of the earlier papers was to extablish a link between the
six-vertex and homogeneous chiral Potts models, the chiral Potts condi-
tions(4)

aN
p +k′bN

p =kdN
p , k′aN

p +bN
p =kcN

p , (1)

were immediately introduced. Here k, k′ are fixed constants (the same for
all sites and edges of the lattice), satisfying

k2 +k′2 =1. (2)

The point of this paper is to emphasize that these conditions are not
needed at the first step of the procedure. Even without them, and with
ap, bp, cp, dp allowed to take arbitrary values for each of the 2L vertical
rapidity lines of the lattice, it is still true that the column-to-column trans-
fer matrix (the “Q” matrix) of the τ2(tq) model commutes with that of
the original six-vertex model (though not with one another). Further, the
row-to-row transfer matrices of two models τ2(tq), τ2(tq

′) (with different
horizontal rapidity variables tq , tq

′ but the same vertical p-rapidities) com-
mute. These τ2(tq) and τj (tq) matrices satisfy straightforward generaliza-
tions of the functional relations (4.27) of ref. 2.

Fig. 1. The square lattice L of L columns with cyclic boundary conditions, showing the
horizontal rapidity lines q1, q2, . . . and the vertical rapidity lines p1, p2, . . . , p2L.
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We shall also show, still without the conditions (1), that we can define
a chiral Potts model that is related to the τ2(tq) model by appropriate
generalizations of the transfer matrix functional relations of ref. 2. It is,
however, in general inhomogeneous, its Boltzmann weights being of the
usual form, but the parameters therein being related in a rather compli-
cated algebraic manner both to the p variables and to the tq variable. Fur-
ther, its row-to-row transfer matrices do not in general commute with one
another, except in the particular combination

T (ωix,ωjy)T̂ (ωkx,ωly)

defined in Eqs. (25)–(28), (39)–(41) below.2 (Here i, j, k, l are arbitrary
integers.) Such a two-row transfer matrix is basically that of the “super-
integrable” chiral Potts model.(5)

Finally, we shall remark that this general inhomogeneous model
includes as a special case the homogeneous τ2(tq) model with closed
(fixed-spin) boundary conditions. The functional relations between the
τj (tq) matrices then simplify, and the eigenvalue spectrum is that of a
direct product of L single-spin matrices. This agrees with the properties of
such a superintegrable chiral Potts model that we observed in ref. 5.

We have written the conditions (1), (2) down because they are so usu-
ally associated with the chiral Potts model.3 Here we never use them. The
rapidity p ={ap, bp, cp, dp} has value p(m)={ap(m), bp(m), cp(m), dp(m)} on
vertical rapidity line m, for m=1,2, . . . ,2L. There is no restriction on the
complex numbers ap(m), bp(m), cp(m), dp(m).

2. THE SIX-VERTEX MODEL

We start by defining a six-vertex model in a particular field. For this
model the doubled vertical rapidity lines p1, . . . , p2L in Fig. 1 should be
replaced by single “type q” rapidity lines r1, . . . , rL.

Associate a spin σi with each site i of the square lattice L, and
allow σi to take N successive integer values, say 1,2, . . . ,N . These can be
extended to all integer values with the modular N convention σi =σi +N .
Not all values are allowed: vertically adjacent spins σj , σk, with k above j

as in Fig. 1, must satisfy the adjacency rule:

σk =σj or σj −1, mod N. (3)

2The T̂ (x, y) of this paper generalizes the T̂ of ref. 2, but with x and y interchanged.
3They ensure that the column-to-column transfer matrices of the τ2(tq ) model, i.e. the Q

model, commute.
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and horizontally adjacent spins σi, σj , with j to the right of i, must satisfy

σj =σi or σi +1, mod N. (4)

A typical face i, j, k, l, with the corner sites i, j, k, l arranged anti-clock-
wise form the bottom-left of the square lattice is shown in Fig. 1. With
each face i, j, k, l associate a Boltzmann weight function W6V (σi, σj , σk,

σl). If σi =a is fixed, then there are only six possible choices of the other
three spins, as shown in Fig. 1. We define the corresponding Boltzmann
weights to be

W6v(a, a, a, a)=ωt −1, W6v(a, a +1, a, a −1)=ωt −1,

W6v(a, a +1, a −1, a)= t −1, W6v(a, a, a −1, a −1)=ω(t −1), (5)

W6v(a, a +1, a, a)=ω−1, W6v(a, a, a, a −1)= (ω−1) t,

for all integers a. Here
ω= e2πi/N (6)

and t is a free parameter. For all other (non-allowed) values of a, b, c, d

we take W6V (a, b, c, d) to be zero. We may exhibit the t dependence by
writing W6V (a, b, c, d) as W6V (t |a, b, c, d).

The partition function is

Z =
∑∏

ijkl

W6V (σi, σj , σk, σl). (7)

Here the product is over all faces (i, j, k, l) of the lattice, with cyclic (toroi-
dal) boundary conditions. The outer sum is over all values of all the spins.

One can regain the usual arrow picture of the six-vertex model by
drawing arrows on the edges of the dual lattice, pointing to the left or
up if the spins on either sides are equal, to the right or down else. Then
the six spin configurations of Fig. 2 become those of Fig. 8.2 of ref. 6,
where two arrows point into each vertex and two point out. Note that the

Fig. 2. The six spin configurations of the six-vertex model.
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Fig. 3. The generalized star-triangle relation.

weights (5) are not those of the usual zero-field six-vertex model, since the
weights of the third and fourth configurations are unequal. A field with
weight ω1/2 has been applied to the third and fourth weights.4 Apart from
this field, the λ, v of Eq. (9.2.3) of ref. 6 are related to our present vari-
ables ω by e−2λ =ω, eλ+v = t .

With each horizontal (vertical) rapidity qi (rj ) we associate a param-
eter tqi

trj . Then the model is solvable if for each face

t = tq/tr , (8)

q =qi being the horizontal rapidity and r = rj the vertical. This is in part
because the function W6V satisfies the star-triangle relation

∑
g

W6V (tq |b, c, g, a)W6V (tr |a, g, e, f )W6V (tr/tq |g, c, d, e)

=
∑
g

W6V (tr/tq |a, b, g, f )W6V (tr |b, c, d, g)W6V (tq |g, d, e, f ) (9)

for all tq , tr and all values of the external spins a, b, c, d, e, f . This relation
is depicted graphically in Fig. 3, provided we take W1,W2,W3 therein to
be W6V (tq),W6V (tr ),W6V (tr/tq).

2.1. Transfer Matrices

In this N -state spin formulation, the row-to-row transfer matrix of the
six-vertex model is an NL by NL matrix U6V , with entries

[U6V ]a,b =
L∏

j=1

W6V (aj , aj+1, bj+1, bj ), (10)

4Pasquier and Saleur consider the hamiltonian associated with the six-vertex model in this
special field.(7)
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where a = {a1, . . . , aL} is the set of spins in the lower of two successive
rows of the lattice L, and b = {b1, . . . , bL} is the set of spins in the row
immediately above. It depends on t , so can be written as U6V (t).

Similarly, the column-to-column transfer matrix is V6V = V6V (t),
where

[V6V ]a,b =
M∏

j=1

W6V (aj , bj , bj+1, aj+1), (11)

and a ={a1, . . . , aM} is the set of spins in one column, b={b1, . . . , bM}, is
the set of spins one column to the right, and M is the number of rows of
the lattice.

Regarding the spins b, c, e, f as fixed, the star-triangle relation (9)
can be viewed as the element (a, d) of an N by N matrix relation. It
involves matrices with entries W3(a, c, d, e), W3(a, b, d, f ). Provided these
are invertible (which they usually are), the relation ensures that(6,Sec. 9.6).

U6V (tq)U6V (tr )=U6V (tr )U6V (tq), (12)

i.e. the row-to-row transfer matrices commute, for all choices of tq , tr .
Similarly, regarding a, c, d, f as fixed and each side of (9) as the ele-

ment (b, e) of an N by N matrix, it also implies that

V6V (tq)V6V (tr )=V6V (tr ) V6V (tq), (13)

so the column-to-column transfer matrices also commute with one another.

3. THE τ2(tq) MODEL

The τ2(tq) model is also an N -state model on the square lattice L, but
now the spins only need to satisfy the vertical adjacency rule (3). The hori-
zontal rule (4) is not imposed. The partition function is again given by (7),
but with W6V replaced by Wτ .

The vertical adjacency rule means that the Boltzmann weight function
Wτ(a, b, c, d) is zero unless a−d =0 or 1 (mod N ) and b−c=0 or 1 (mod
N ). If these constraints are satisfied, then

Wτ(a, b, c, d) = Wτ(tq |a, b, c, d)

=
∑
m

ωm(d−b)(−ωtq)a−d−mFpq(a −d,m)Fp′q(b− c,m),

(14)
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where

Fpq(0,0)=1, Fpq(0,1)=−ωcptq/bp,

Fpq(1,0)=dp/bp, Fpq(1,1)=−ωap/bp. (15)

This function Wτ is the multiplicand of eqn. (3.44a) of ref. 2. It is linear
in the rapidity variable tq and is the Boltzmann weight of two triangles
{a, d,m}, {b, c,m}, summed over the common spin m, with value 0 or 1,
as represented in Fig. 4. The triangles have weights Fpq(a−d,m),Fp′q(b−
c,m). There are also edge weights ωmd,ω−mb, (−ωtq)a−d , and a site weight
(−ωtq)−m.

Here p denotes the four complex variables ap, bp, cp, dp. Auxiliary
variables that we shall use are

xp =ap/dp, yp =bp/cp, tp =xpyp, µp =dp/cp. (16)

Similarly for p′. Throughout this paper we impose no restrictions on
ap, bp, cp, dp (or ap′ , bp′ , cp′ , dp′ ). They are independent variables.

In (14) p and p′ are the values of p for the particular face of the lat-
tice under consideration. If the face is between spin columns J and J +1,
then p =p2J−1 and p′ =p2J .

We see the reason for the doubling of the vertical rapidity lines in
Fig. 1. The odd rapidities p1, p3, . . . , p2L−1 are those of triangles such
as the one on the left in Fig. 4, with weight Fpq . The even rapidities
p2, p4, . . . , p2L are those of triangles on the right in Fig. 4, with weight
Fp′q .

The remarkable feature of the τ2(tq) model is that Wτ and W6V

together satisfy a second star-triangle relation:

Fig. 4. The Boltzmann weight Wτ (a, b, c, d) of the τ2 model as that of two osculating tri-
angles. If a, d are in column J and b, c are in column J + 1, then p = p2J−1 and p′ = p2J .
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∑
g

Wτ (tq |b, c, g, a)Wτ (tr |a, g, e, f )W6V (tr/tq |g, c, d, e)

=
∑
g

W6V (tr/tq |a, b, g, f )Wτ (tr |b, c, d, g)Wτ (tq |g, d, e, f ) (17)

for all tq , tr .
This can be obtained from (9) simply by replacing the first two W6V

functions on each side by Wτ . It is also represented by Fig. 3, but now
W1,W2,W3 therein should be replaced by Wτ(tq),Wτ (tr ),W6V (tr/tq).

We can define row-to-row and column-to-column transfer matrices
τ2(tq), Vτ (p,p′) for the τ2 model by replacing W6V in (10) and (11) by Wτ .
Then (17) implies that

τ2(tq)τ2(tr )= τ2(tr )τ2(tq), (18)

i.e. the row-to-row transfer matrices commute for all tq .
Also, from (17),

V6V (t)Vτ (p,p′)=Vτ (p,p′)V6V (t), (19)

for all choices of t, p,p′, tq in (5), (14), (15). The column-to-column trans-
fer matrices of the six-vertex model therefore commutes with that of any
particular τ2 model. This was the starting-point of Bazhanov and Strog-
anov’s derivation.(1) Note that it does not imply that the column-to-col-
umn transfer matrices of two different τ2 models commute. This is because
when ω has the particular “root of unity” value (6) the eigenvalues of the
six-vertex model are degenerate.

We shall not consider column-to-column transfer matrices any further
herein. All the transfer matrices we shall write down in subsequent equa-
tions will be row-to-row matrices of dimension NL by NL. The vertical
p-rapidities are to be regarded as constants and the horizontal q-rapidity
parameters tq as variables, in general complex.

We note in passing that a useful check on both star-triangle relations
is provided by noting from (5) that

W6V (1|a, b, c, d)= δ(a, c).

When tq = tr , it immediately follows that g=d (g=a) on the left hand side
(LHS) (right hand side (RHS)) of each relation, and that both are trivially
satisfied.
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Evaluating (14) for the four values of a −d and b−c, we find that in
each case it is linear in the variable tq , so from (10) the matrix τ2(tq) is
a polynomial in tq of degree at most L (usually it is of degree L). From
the commutation relation (18) (assuming, as seems to be the case, that the
eigenvalues are not identically degenerate), the eigenvectors of τ2(tq) must
be independent of tq . The eigenvalues are therefore also polynomials in tq
of degree L.

4. THE τ2,T RELATION

The commutation relation (18) is true for any two τ2 models with
the same vertical rapidities p1, p2, . . . , p2L and different horizontal rapidi-
ties tq , tr . Here pj is short-hand for the set {apj

, bpj
, cpj

, dpj
}, so there are

actually 8L complex numbers specifying the vertical rapidities. We empha-
size that there are no constraints on these numbers. They can all be chosen
independently and (18) will still be satisfied.

The object of this paper is to generalize the transfer matrix functional
relations of ref. 2 to this arbitrary inhomogeneous model. We start with
the τ2, T relation of section 4 therein. All equation numbers herein that
contain a decimal point, e.g. (4.10), are references to equations of ref. 2.

Without loss of generality, we can take k = 0 in ref. 2. Then (4.4)
becomes

[GJ (a)]m,m′ =
∑
d

ωm′d−ma(−ωtq)a−d−m′

Fpq(a −d,m′)Fp′q(a −d,m)gJ (d) (20)

and (4.9) is

1∑
m′=0

[GJ (a)]m,m′ (−rJ+1)
m′ =g′

J (a) (−rJ )m. (21)

Here m,m′ take the values 0,1 and the sum in (20) is over the allowed
values a, a −1 of the spin d.

The RHS of (20) is the Boltzmann weight of two successive triangles
of the τ2 model, as shown in Fig. 5, with associated edge and site weights,
and an additional site weight gJ (d). The spins a, d are in column J (J =
1, . . . ,L) of the lattice shown in Fig. 1, so the p,p′ here are the rapidities
p2J−1, p2J−2:

p =p2J−1, p′ =p2J−2. (22)
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Fig. 5. The sites and faces of L involved in the working of section 4 of ref. 2. If a, d are in
column J , then p′ =p2J−2 and p =p2J−1.

With this identification, (4.11) follows and (4.12) is

aN
p2J−2

−dN
p2J−2

rN
J

cN
p2J−2

tNq −bN
p2J−2

rN
J

× dN
p2J−1

tNq −aN
p2J−1

rN
J+1

bN
p2J−1

− cN
p2J−1

rN
J+1

=1 (23)

for J = 1, . . . ,L, taking p0 =p2L. This is the condition that the function
gJ (a) be periodic of period N , i.e. gJ (a+N)=gJ (a). We need this because
the spins in the τ2 model only take N values and are always to be inter-
preted as integers modulo N .

Given rN
1 , we can solve the bilinear relation (23) successively for

rN
2 , . . . , rN

L , rN
L+1. Since rL+1 = r1, this gives a quadratic relation for rN

1 ,
and hence for all the rN

J . In ref. 2, we then used the fact that we were
taking the vertical rapidities to be those of the usual chiral Potts model
to obtain the two explicit solutions (4.13) for the rN

J .
Here we can no longer do this: all we can say is that the sequence

rN
1 , . . . , rN

L is one of the two solutions of (23).5

We can still carry on with the rest of the working. In place of (4.13)
we set

rJ =ω1−βJ−1 , xJ−1, yJ−1 = tq/xJ−1, (24)

where βJ−1 is an integer that does not enter the relations (23). For given
vertical rapidities p1, . . . , pL, we take tq , x1, . . . , xL, y1, . . . , yL to be fixed,
satisfying (23) and (24). Then we allow β1, . . . , βL to take any set of inte-
ger values.

Equations (4.15)–(4.18) still follow, provided we replace ω−βJ aq/dq by
ω−βJ xJ , ω−βJ cq/bq by ω−βJ /yJ , and similarly with J replaced by J − 1.
Then in place of (4.19) we obtain

5They do have some interesting properties, as in Eq. (55).
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gJ (a) = ypyp′ WJ−1(a −βJ−1|ωxJ−1, yJ−1)WJ (a −βJ |ωxJ , yJ ),

g′
J (a) = (yp −ωxJ )(tp′ − tq)

xp′ −xJ−1

×WJ−1(a −βJ−1|xJ−1, yJ−1)WJ (a −βJ |xJ , yJ ),

g′′
J (a) = (1−yp′/yJ−1)(tp −ωtq)

1−xp/yJ

WJ−1(a −βJ−1|ωxJ−1,ωyJ−1)

×WJ (a −βJ |ωxJ ,ωyJ ).

Here p =p2J−1, p′ =p2J−2 and xp, yp, tp, xp′ , yp′ , tp′ are defined by (16).
The functions W , W are given by

WJ (a|xJ , yJ )=
a∏

i=1

dp2J−1 −ωiap2J−1/yJ

bp2J−1 −ωicp2J−1xJ

(25)

WJ (a|xJ , yJ )=
a∏

i=1

ωap2J
−ωidp2J

xJ

cp2J
−ωibp2J

/yJ

(26)

Note the distinction between x and y with a p or p′ suffix, and x and
y with an integer J or J − 1 suffix. The former are defined by (16) and
are vertical rapidity variables. The latter are defined by (24). In fact, xJ , yJ

are generalizations of the xq, yq of ref. 2, so can be thought of as “q vari-
ables”, but they also depend via (23) on all the vertical rapidities.

These functions are generalizations of the chiral Potts model edge-
weight functions W , W

(4,Eqs. (2) and (3);8, Eqs. (2.4) and (2.5))
. Their defini-

tions can be extended to negative integers a in the usual way:

a∏
i=1

si =
0∏

i=a+1

1/si

for any si . However, they do not satisfy the usual periodicity conditions
W(a +N)=W(a), W(a +N)=W(a). Instead they satisfy the weaker con-
dition

WJ (a +N |xJ , yJ )WJ−1(b+N |x′
J−1, y

′
J−1)

WJ (a|xJ , yJ )WJ−1(b|x′
J−1, y

′
J−1)

=1 (27)

where x′
J =ωixJ , y′

J =ωiyJ and the integers a, b, i, j are arbitrary. In fact
this is just the condition (23). It ensures that the functions gJ (a), g′

J (a),
g′′

J (a) are all periodic of period N .
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4.1. The “Chiral Potts” Transfer Matrix

We now generalize the usual definition of the chiral Potts transfer
matrix in (2.15a) and define a matrix T (x, y) with entries

T (x, y)a,β =
L∏

J=1

WJ (aJ −βJ |xJ , yJ )WJ−1(aJ −βJ−1|xJ−1, yJ−1). (28)

Here x ={x1, . . . , xL}, y ={y1, . . . , yL}, a={a1, . . . , aL} and β ={β1, . . . , βL}.
Because of (27), incrementing any of the spins a1, . . . , aL by N leaves

T (x, y)a,β unchanged. Thus the rows of the matrix T (x, y) have the
same modulo-N spin invariance property as the rows and columns of the
τ2-model transfer matrix τ2(tq). Restricting each of these spins to N val-
ues, τ2(tq) is a square NL by NL matrix; T (x, y) has NL rows.

The columns of T (x, y), labelled by β1, . . . , βL, are slightly more sub-
tle. Incrementing any βJ by N does change the RHS of (28), but only by
multiplying it by a factor independent of a1, . . . , aL. Further, this factor
depends on x1, . . . , yL only via their N th powers. It follows that T (x, y)

has at most NL linearly independent columns, and numerical calculations
strongly suggest that in general there are indeed NL linearly independent
columns. Thus although we may take T (x, y) to have more than NL col-
umns, there is a unique NL by NL matrix Sij (x, y) such that

Sij (x, y)T (x, y)=T (ωix,ωjy) (29)

for all integers i, j . We formally write Sij (x, y) as

T (ωix,ωjy) T (x, y)−1.

With these definitions, Eq. (4.20) of ref. 2 becomes

τ2(tq) T (ωx, y)= c(x, tq) T (x, y)+d(y, tq) T (ωx,ωy), (30)

where

c(x, tq) =
L∏

J=1

(yp2J−1 −ωxJ )(tp2J
− tq)

yp2J−1 yp2J
(xp2J

−xJ )
,

d(y, tq) =
L∏

J=1

(yp2J
−yJ )(tp2J−1 −ωtq)

yp2J−1 yp2J
(xp2J−1 −yJ )

. (31)
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As in (2.42), define an NL by NL matrix X with entries

Xσ,σ ′ =
L∏

J=1

δ(σJ , σ ′
J +1). (32)

This is the operator that shifts all spins in a row by one. It commutes with
τ2(tq):

X τ2(tq)= τ2(tq)X. (33)

Replacing xJ , yJ in (25), (26) by ω−1xJ ,ωyJ is equivalent to replacing the
index i by i −1. It follows that

T (ω−1x,ωy)=ρ(x, y)X T (x, y), (34)

where

ρ(x, y)=
L∏

J=1

µp2J−1µp2J
(1−xp2J−1/yJ )(ω xp2J

−xJ )

(yp2J−1 −xJ )(1−yp2J
/yJ )

. (35)

One other function that we need is given by the obvious generalization of
(4.23):

z(tq)=
L∏

J=1

ωµp2J−1µp2J
(tp2J−1 − tq)(tp2J

− tq)/(yp2J−1yp2J
)2. (36)

It is a polynomial in tq , of degree 2L. Then one can verify that

c(x,ωtq)d(y, tq)ρ(ωx, y)= z(ωtq) (37)

from which it follows that we write (30) as

τ2(tq) T (ωx, y)= z(tq)

d(ω−1y,ω−1tq)
X T (ωx,ω−1y)+d(y, tq) T (ωx,ωy).

(38)

5. THE τ2 ,̂T RELATION

We obtained (38) by considering an NL-dimensional vector g which is
a direct product of L vectors of dimension N , forming τ2(tq)g and finding
the conditions under which this is the sum of two such direct product vec-
tors. There are NL linearly independent vectors g. The matrix with these
columns is T (x, y).
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We can also form instead the row-vector gT τ2(tq). Corresponding
working goes through and we are led to define two more Boltzmann
weight edge-functions

ŴJ (a|xJ , yJ ) =
a∏

i=1

ωdp2J
xJ −ωi ap2J

bp2J
/yJ −ωi−1cp2J

, (39)

Ŵ J (a|xJ , yJ ) =
a∏

i=1

ωap2J−1/yJ −ωi−1 dp2J−1

ωcp2J−1xJ −ωi bp2J−1

(40)

and a transfer matrix T̂ (x, y) with entries

T̂ (x, y)βa =
L∏

J=1

Ŵ J (βJ −aJ |xJ , yJ )ŴJ−1(βJ−1 −aJ |xJ−1, yJ−1). (41)

Setting

d̂(y, tq)=
L∏

J=1

ω(yJ −yp2J
)(tp2J−1 − tq)

yp2J−1yp2J
(yJ −ωxp2J−1)

, (42)

we obtain the analogue of (4.21):

T̂ (x,ωy) τ2(tq)= z(ωtq)

d̂(ωy,ωtq)
T̂ (x,ω2y)X + d̂(y, tq) T̂ (x, y). (43)

6. THE τj RELATIONS

Here we extend the τ2 matrices to the set τ1, . . . , τN+1, where τj =
τj (tq) is a polynomial in tq of degree (j − 1)L. We shall not give explicit
definitions in terms of lattice models, as is done in section 3 of ref. 2, but
will use only the relation (38).

We start by defining

	r(x, y)= d(y, tq)d(ωy,ωtq) · · ·d(ωr−1y,ωr−1tq), r �0

= {d(ω−1y,ω−1tq)d(ω−2y,ω−2tq) · · ·d(ωry,ωr tq)}−1, r �0,

and

Dr(x, y)=	r(x, y) T (ωx,ωry)T (ωx, y)−1. (44)
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In particular, D0(x, y)= I is the identity matrix. From (29), we expect the
RHS to exist and be unique.

The relation (38) can then be written

τ2(tq)= z(tq)XD−1(x, y)+D1(x, y). (45)

The spin-shift operator X commutes with τ2(tq) and with all the Dr(x, y).
It is consistent with (45) that all the matrices Dr(ω

ix,ωjy) commute with
τ2(tq) and with one another, for all r, i, j . This is what we observe numer-
ically: we shall assume that this is so.

We now define τj (tq) to be

τj (tq) =
j−1∑
k=0

z(tq)z(ωtq) · · · z(ωk−1tq)Xk Dk(x,ωk−1y)Dj−k−1(x,ωky)

(46)

for j �0. Then
τ0(tq)=0 τ1(tq)= I

and τ2(tq) is as given in (45). From this definition it follows that

τ2(ω
j−1tq)τj (tq) = z(ωj−1tq)X τj−1(tq)+ τj+1(tq), (47a)

τj (ωtq)τ2(tq) = z(ωtq)X τj−1(ω
2tq)+ τj+1(tq), (47b)

τN+1(tq) = z(tq)XτN−1(ωtq)+αq +αq, (47c)

for j =1, . . . ,N , where

αq =
N−1∏
i=0

d(ωiy,ωitq), (48)

αq =
N−1∏
i=0

z(ωitq)/d(ωiy,ωitq). (49)

The two sets of relations (47a), (47b) are equivalent. Note that αq,αq are
unchanged by the mapping

x, y, tq →x,ωy,ωtq .

These equations are the generalizations of (4.27)–(4.29). In deriving
them we have kept x = {x1, . . . , xL} fixed and incorporated all multipli-
cations by powers of ω into y = {y1, . . . , yL} and therefore tq , so if we
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write the RHS of (46) more explicitly as τj (x, y), then by τj (ω
ktq) in the

above equations we mean τj (x,ωky). However, (47a) or (47b) can be used
to successively form τ3(tq), τ4(tq), etc. Since z(tq) and τ2(tq) are polyno-
mials in tq of degree 2L L, respectively, from this construction it follows
that each τj (tq) is also a polynomial in tq , of degree (j − 1)L. So τj (tq)

is indeed a single-valued function of tq , unchanged by replacing x, y by
ωx,ω−1y, and by the choice of the solution of (23).

From (18) it follows that all the matrices τj (tq) commute, for all val-
ues of tq . There is therefore a similarity transformation, independent of tq ,
that simultaneously diagonalizes all the τj (tq). Then (47a)–(47c) become
scalar functional relations for each eigenvalue, which is also a polyno-
mial in tq . These relations define the eigenvalue. There are many solutions,
corresponding to the different eigenvalues.

Another way of looking at this is to note that if we replace y in
(38) by ωy,ω2y, . . . ,ωN−1y, we obtain a total of N homogeneous linear
equations for N unknowns T (ωx, y), . . . , T (ωx,ωN−1y). The determinant
of these relations must vanish, and that is the relation for the function
τ2(tq) obtained by eliminating τ3(tq), . . . , τN+1(tq) from (47a) and (47c), or
equivalently from (47b) and (47c).

We have derived the hierarchy of relations (47a)–(47c) from (38). We
could equally well have derived them from (43).

7. CALCULATION OF αq + αq

Since each matrix function τj (tq) is a polynomial in tq , from (47c),
the same must be true of αq +αq , and it must be of degree at most NL.
This is by no means obvious: it appears from (48) and (49) that αq and
αq are each quite complicated functions of the solution x1, . . . , xL of (23).
The object of this section is to unravel this little mystery.

From 16 and (24), using the shorthand notation (22), we can write
the the condition (23) as

µN
p µN

p′
(xN

p′ −xN
J−1)(t

N
q −xN

p xN
J )

(tNq −yN
p′xN

J−1)(y
N
p −xN

J )
=1. (50)

We can use this relation to eliminate the factors containing yJ in (31) and
(48). Using also (36) and (49), it follows that

αq =
L∏

J=1

µN
p µN

p′ (xN
p′ −xN

J−1) (tNp − tNq )

yN
p yN

p′ (yN
p −xN

J )
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αq =
L∏

J=1

(yN
p −xN

J ) (tN
p′ − tNq )

yN
p yN

p′ (xN
p′ −xN

J−1)
, (51)

where in the multiplicands we again write p,p′ for p2J−1, p2J−2, respec-
tively.

Since J = 1, . . . ,L and x0 = xL, (50) is a set of L equations for
xN

1 , . . . , xN
L . We noted above that it has two solutions. Let the other solu-

tion be x′
1
N

, . . . , x′
L

N . Then from (50)

(xN
p′ −xN

J−1)(t
N
q −xN

p xN
J )(tNq −yN

p′x′N
J−1)(y

N
p −x′

J
N

)

= (xN
p′ −x′N

J−1)(t
N
q −xN

p x′
J

N
)(tNq −yN

p′xN
J−1)(y

N
p −xN

J ). (52)

This equation can be re-written in the “Wronskian” form:

(xN
J−1 −x′N

J−1)(t
N
q −xN

p xN
J )(yN

p −x′N
J )(tNp′ − tNq )

= (xN
J −x′N

J )(tNq −yN
p′xN

J−1)(x
N
p′ −x′N

J−1)(t
N
p − tNq ). (53)

We can use (50) to eliminate the factors (tNq −xN
p xN

J ), (tNq −yN
p′xN

J−1), leav-
ing

(yN
p −xN

J )(tN
p′ − tNq )

yN
p yN

p′(xN
p′ −xN

J−1)
=

µN
p µN

p′(xN
J −x′N

J )(xN
p′ −x′N

J−1)(t
N
p − tNq )

yN
p yN

p′(xN
J−1 −x′N

J−1)(y
N
p −x′N

J )
. (54)

Taking the product over J = 1, . . . ,L, the factors (xN
J − x′N

J ), (xN
J−1 −

x′N
J−1) cancel, giving

αq = [
αq

]′
, (55)

where
[
αq

]′ is defined by (51), but with each xJ replaced by x′
J . Inter-

changing each xJ , x′
J , it follows at once that αq = [

αq

]′, so αq + αq is
unchanged by replacing the solution x1, . . . , xL by the alternative solution
x′

1, . . . , x′
L. It is therefore a single-valued function of tq .

Now we look at (50), considered as a recursion relation giving xN
J−1

in terms of xN
J . Set

xN
J =fJ /gJ (56)
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for J =1, . . . ,L. Then we can choose the normalization so that

−yN
p yN

p′fJ−1 = (tNq −µN
p µN

p′xN
p xN

p′)fJ + (µN
p µN

p′xN
p′ −yN

p′)tNq gJ ,

−yN
p yN

p′gJ−1 = (yN
p′ −µN

p µN
p′xN

p )fJ + (µN
p µN

p′ tNq −yN
p yN

p′)gJ , (57)

where again p=p2J−1, p′ =p2J−2. This is a linear relation for (fJ−1, gJ−1)

in terms of (fJ , gJ ).
With these definitions, we find that the multiplicand in the second Eq.

(51) is simply gJ−1/gJ , so

αq =
L∏

J=1

gJ−1/gJ =g0/gL. (58)

Define two-by-two matrices

A2J =

 tNq µN

p2J
xN
p2J

yN
p2J

µN
p2J


/

yN
p2J

,

B2J−1 =

 −1 yN

p2J−1

µN
p2J−1

xN
p2J−1

−µN
p2J−1

tNq


/

yN
p2J−1

(59)

and set
ξJ =

(
fJ

gJ

)
.

Then (57) can be written as

ξJ−1 =A2J−2B2J−1ξJ . (60)

Since xN
0 =xN

L , it follows that ξ0 =λξL, where

ξ0 =λξL =A2LB1A2B3 · · ·A2L−2B2L−1 ξL (61)

Thus λ is the eigenvalue of U = A2LB1 · · ·A2L−2B2L−1, ξL is the corre-
sponding eigenvector and, from (58),

αq =λ. (62)

Since U is a two-by-two matrix, it has two eigenvalues λ and λ′, corre-
sponding to the two solutions x and x′ of the recurrence relations. How-
ever, we have just shown that interchanging the solutions replaces αq by
αq , so
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αq =λ′. (63)

Since λ+λ′ is the trace of the matrix U , it follows that

αq +αq =Trace
(
A2LB1A2B3 · · ·A2L−2B2L−1

)
. (64)

We are regarding the vertical rapidity parameters xp1 , yp1 ,µp1 , · · · , xpL
,

ypL
, µpL

as constants and tq as a complex variable, so this is an explicit
expression for αq + αq that makes it clear that it is indeed a polynomial
in tNq . Since A2J−2B2J−1 is linear in tNq , this polynomial is of degree not
greater than L (in general it is of degree L).

From (36), (51) and (59) it is readily seen that

λλ′ =detU =
N∏

i=1

z(ωitq)=αqαq,

so we could have obained (63) without going through the working from
Eqs. (52) to (55). We have included that working, partly for completeness,
but also because it is an elegant example of how in solvable models the
algebra conspires to produce needed results.

The τj (tq) relations (47a)–(47c), together with (59) and (64), provide
a closed set of equations that determine the eigenvalues of the τj (tq)

matrices, all quantities being polynomials in the complex variable tq . To
use them, there is no need to solve the eigenvalue equation (61), which
is equivalent to the recurrence relation (23). We could presumably have
obtained these relations directly by a “fusion” method, generalizing the
definition (3.26)–(3.44) of τj (tq), but this is quite technical. We prefer the
present approach, based on the Eq. (38).

We have assumed that the matrices Dr(ω
ix,ωjy) commute with one

another and with τ2(tq). This assumption agrees with numerical calcula-
tions we have performed for N = L = 3, but it can probably be removed.
We can certainly apply a similarity transformation (independent of tq ) that
diagonalizes τ2(tq) (for all tq ). Applying this only to the left of (38), it
becomes a set of many equations for each eigenvalue of τ2(tq). If we
focus on just one eigenvalue and one such equation, then, as we remarked
above, we can obtain N relations from it by replacing y, tq by ωi,ωitq ,
for i = 0, . . . ,N − 1. These are homogeneous linear relations for the cor-
responding N elements of T (ωx,ωiy), so their determinant must vanish.
The resulting determinantal relation must be equivalent to (47a)–(47c).
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8. THE T,T̂ RELATIONS

From the definitions (46) we can also establish that

αqτj (tq)+ z(tq) · · · z(ωj−1tq)Xj τN−j (ω
j tq)=Dj(x,ω−1y) τN(tq)

for j =0, . . . ,N . From (44), there must therefore be a matrix Y (x, y), inde-
pendent of j , such that

	j(x,ω−1y)T (ωx,ωj−1y)Y (x, y)

=αqτj (tq)+ z(tq) · · · z(ωj−1tq)Xj τN−j (ω
j tq) (65)

for j =0, . . . ,N .
These equations have the same structure as the fusion hierarchy of

relations (3.46), except we still have to identify the matrix Y . We have not
fully done this, but we can note from (25), (26), (39), (40) that

WJ (a|ωxJ , yJ ) ŴJ (−a|xJ , yJ )=1, (66)

∑
c

WJ (a − c|ωxJ , yJ )Ŵ J (c−b|xJ , yJ )

= N(xp −ω−1yJ )(yp −ωxJ )(tNp − tNq )

(tp − tq)(xN
p −yN

J )(yN
p −xN

J )
δa,b, (67)

where p = p2J−1, and δa,b = 1 if a = b to modulo N , else δa,b = 0. The
sum is over any N consecutive integer values of c: although the W func-
tions individually are not periodic functions, the products in the above two
equations are indeed periodic functions of a, b, c, of period N .

Consider the matrix product T (ωx, y)T̂ (x, y), by which we mean the
usual sum over the intermediate indices, in this case both being the β indi-
ces in (28), (41). Incrementing any βJ by N multiplies the columns of
T (ωx, y) by certain factors, but divides the rows of T̂ (x, y) by the same
factors, so leaves their product unchanged. Thus we can naturally take the
intermediate sum to be over the values 0, . . . ,N −1 (or any set of N suc-
cessive values) of each of β1, . . . , βL.

The matrix product is the Boltzmann weight of two successive rows of
the lattice. A typical face of this double row is shown in Fig. 6. Suppose
the two external spins aj+1, bJ+1 are equal. Then from (66), the Boltz-
mann weight factors WJ ŴJ factors cancel. The sum over the centre spin
c then gives the RHS of (67), which vanishes unless aJ =bJ , mod N .
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Fig. 6. The Boltzmann weight of a face of the transfer matrix product T (ωx, y)T̂ (x, y).

If aJ =bJ , then the same argument applied to the face to the left tells
us that aJ−1 =bJ−1, and so on. It follows that

T (ωx, y)T̂ (x, y)= [
τ1(tq)+R

]
/g(x, y), (68)

where R is a matrix with non-zero elements Rab only when a1 �= b1, . . . ,
aL �=bL, and

g(x, y)=
L∏

J=1

(tp − tq)(xN
p −yN

J )(yN
p −xN

J )

N(xp −ω−1yJ )(yp −ωxJ )(tNp − tNq )
, (69)

where each p in the multiplicand is p2J−1.
This is an “inversion identity”: it has the same structure as the j =1

case of (65), with the matrix T (ωx, y) on the left and the first term on the
right being proportional to τ1(tq), i.e. to the identity matrix. We conjec-
ture (in agreement with numerical calculations) that the RHS of the two
relations are in fact the same, to within a scalar factor, in which case R =
z(tq)XτN−1(ωtq)/αq and

	1(x,ω−1y)Y (x, y)=αq g(x, y) T̂ (x, y). (70)

Then (65) becomes

g(x, y)	j−1(x, y)T (ωx,ωj−1y) T̂ (x, y)

= τj (tq)+ z(tq) · · · z(ωj−1tq)Xj τN−j (ω
j tq)/αq. (71)

This is the generalization of (3.46).
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8.1. Consistency

An interesting consistency check on (71) is provided by post-multiply-
ing (38) by T̂ (x,ωy), and pre-multiplying (43) by T (ωx, y). The LHS are
then the same, equating the RHS gives

z(tq)

d(ω−1y,ω−1tq)
X T (ωx,ω−1y)T̂ (x,ωy)+d(y, tq) T (ωx,ωy)T̂ (x,ωy)

= z(ωtq)

d̂(ωy,ωtq)
T (ωx, y)T̂ (x,ω2y)X + d̂(y, tq) T (ωx, y)T̂ (x, y). (72)

We can use (71) to express each of the T T̂ products as a sum of τj terms.
In fact we get only terms proportional to τ1(tq), τ1(ωtq), τN−1(ωtq) and
τN−1(ω

2tq). There are two terms proportional to each of these four fac-
tors. Since τ1(tq)= I , we can interchange τ1(tq) with τ1(ωtq) on the RHS.
Using only the relations

	N−2(x,ωy) = αq/{d(y, tq) d(ω−1y,ω−1tq)},
d̂(y, tq) = d(y, tq)g(x, y)/g(x,ωy)

and the commutation of X with all the τj matrices, we then find that the
two terms for each τ factor cancel, thereby verifying (72).

9. THE τ2(tq) MODEL WITH OPEN BOUNDARIES

We return to considering the hierarchy of relations (47a)– (47c) for
the τj (tq) functions.

These relations simplify greatly when we impose fixed-spin boundary
conditions on the left and right sides of the lattice. We can do this by
taking

ap1 =dp1 =0. (73)

Then Fp1q(1,m) = 0, so the weight function of Fig. 4 vanishes for the
faces between column 1 and column 2 unless a = d. This is equivalent to
requiring that all the spins in column 1 of Fig. 1 be equal. The model
is unchanged by incrementing every spin by one, so we can in particular
require that every spin on column 1 be zero. It is evident from Fig. 1 that
this is the same as requiring that all spins on the left and right boundaries
be zero.
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Equation (73) implies that

µp1 =xp1 = z(tq)=αq =0 (74)

so the relations (47a), (47b) imply that

τj (tq)= τ2(tq)τ2(ωtq) · · · τ2(ω
j−2tq), (75)

for j =1, . . . ,N +1. Hence (47c) simplifies to

τ2(tq)τ2(ωtq) · · · τ2(ω
N−1tq)=α. (76)

From (64), noting that the second row of the matrix B1 is now zero,

α = [B1A2B3A4 · · ·B2L−1A2L]11. (77)

The RHS is a polynomial in tNq of degree L and we noted above that
τ2(tq) and its eigenvalues are polynomials in tq of degree L. Further, when
either tq is large or small, to leading order τ2(tq) is diagonal, with entries

L∏
J=1

(1−ωaJ+1−aJ +1tq/y2J−1y2J )

in row and column a ={a1, . . . , aL}. Let the zeros of (77) be sN
1 , sN

2 , . . . ,
sN
L . Then it follows that all eigenvalues of τ2(tq) are of the form

�(tq)= (ωL/Y )

L∏
j=1

(sj −ωγj tq), (78)

where s1s2 · · · sL =ω−LY , and

Y =
L∏

J=1

yp2J−1yp2J
. (79)

The γ1, . . . , γL are integers with values in the range 0, . . . ,N − 1.
They satisfy the condition γ1 + · · · + γL = 0, and it seems from low-tem-
perature expansions that the full set of NL−1 eigenvalues is obtained by
allowing γ1, . . . , γL to take all such values (distinct to modulo N ).
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It appears that the other values of γ1, . . . , γL that do not satisfy the
sum rule also correspond to eigenvalues of τ2(tq), provided we generalize
the model to allow the skewed boundary conditions

aL+1 =a1 + r

in every row of the lattice ( so all spins in column 1 are still the same, as
are all spins in column L+1, but now those in the two boundary columns
no longer need be equal). Then

γ1 +· · ·+γL = r.

We can take r to be an integer in the range 0, . . . ,N −1.
The eigenvalues therefore have the same simple structure as do direct

products of L matrices, each of size N by N . For N =2 this is the struc-
ture of the eigenvalues of the Ising model.(9)

For the Ising model this property follows from Kaufman’s solution
in terms of spinor operators,(10) i.e. a Clifford algebra.(11, p. 189) Whether
there is some generalization of such spinor operators to handle the τ2(tq)

model with open boundaries remains a fascinating speculation.(12)

The results of this section were anticipated in ref. 5. There we con-
sidered the superintegable chiral Potts model and rotated it though 90◦ to
obtain a model that is in fact the present τN(tq) model. Then we inverted
its row-to-row transfer matrix, thereby obtaining the present τ2(tq) model.6

We did in fact note in section 7 of ref. 5. that we could allow the modulus
k to be different for different rows: this corresponds to our here allowing
ap, bp, cp, dp to all vary arbitrarily from column to column.

10. SUMMARY

We have shown that the column-inhomogeneous τ2(tq) model is solv-
able for all values of the 8L parameters ap1 , bp1 , cp1 , dp1 , . . . , dp2L

, where
apJ

, bpJ
, cpJ

, dpJ
are associated with the J th vertical dotted line in Fig. 1.

They do not need to satisfy the “chiral Potts” conditions (1). The model
then has the unusual property that its row-to-row transfer matrices (with
different values of tq but the same ap1 , . . . , dp2L

) commute, while the col-
umn-to-column transfer matrices do not.

Our results (38), (43), (47a)–(47c), (71) generalize the relations (4.20),
(4.21), (4.27a)–(4.27c), (3.46) of ref. 2. The last generalization (71) is essen-
tially a conjecture, depending as it does on the identification of (68) with

6Note from (75) that τ2(tq )τN (ωtq )=α, so to within a scalar factor the transfer matrix τ2(tq )

is the inverse of τN (ωtq ).
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the j =1 case of (65). However, it has been tested numerically for N =L=
3 with arbitrarily chosen values of the parameters and found to be true to
the 30 digits of precision used.

One significant difference from the homogeneous model is that the
associated chiral Potts model weights (25), (26), (39), (40) depend on tq via
the solution r1, . . . , rL of (23). If we change tq then we change r1, . . . , rL
in a non-trivial way, so it makes little sense to combine T (x, y) for one
value of tq with T̂ (x, y) for another value. It appears that our generalized
chiral Potts transfer matrices T and T̂ , with different values of tq , do not
satisfy any general commutation relations like (2.31)–(2.33) of ref. 2.

In short, we can generalize the τ2(tq) model to arbitrary ap1 , . . . , dp2L
,

but the only chiral Potts model we can correspondingly generalize is the
“superintegrable” model with the alternate row-to-row transfer matrices
T (x, y), T̂ (x, y) defined above. In each double row tq , rN

1 , . . . , rN
L must be

the same for T (x, y) and T̂ (x, y).
The functional relations (47a)–(47c) define the eigenvalues of the row-

to-row transfer matrix τ2(tq). For fixed-spin conditions on the left and
right boundaries these can be solved explicitly, giving the simple “direct
product” result (78).

REFERENCES

1. V. V. Bazhanov and Yu. G. Stroganov, Chiral Potts model as a descendant of the six-ver-
tex model, J. Stat. Phys. 59:799–817 (1990).

2. R. J. Baxter, V. V. Bazhanov, and J. H. H. Perk, Functional relations for transfer matri-
ces of the chiral Potts model, Int. J. Mod. Phys. B 4:803–870 (1990).

3. R. J. Baxter, The six and eight-vertex models revisited, lanl pre-print cond-mat/0403138,
J. Stat. Phys. 116:43–66 (2004).

4. R. J. Baxter, J. H. H. Perk, and H. Au-Yang, New solutions of the star-triangle relations
for the chiral Potts model, Phys. Lett. A 128:138–142 (1988).

5. R. J. Baxter, Superintegrable chiral Potts model: Thermodynamic properties, an “inverse”
model, and a simple associated hamiltonian, J. Stat. Phys. 57:1–39 (1989).

6. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London, 1982).
7. V. Pasquier and H. Saleur, Common structures between finite systems and conformal

field theories through quantum groups, Nuclear Phys. B330:523–556 (1990).
8. R. J. Baxter, Chiral Potts model with skewed boundary conditions, J. Stat. Phys. 73:461–

495 (1993).
9. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transi-

tion, Phys. Rev. 65:117–149 (1944).
10. B. Kaufman, Crystal statistics. II. Partition function evaluated by spinor analysis, Phys.

Rev. 76:1232–1243 (1949).
11. P. Lounesto, Clifford Algebras And Spinors, London Math. Soc. Lecture Note Series,

Vol. 239, (Cambridge University Press, Cambridge, UK 1997).
12. R. J. Baxter, A simple solvable ZN Hamiltonian, Phys. Lett. 140:155–157 (1989).


